Body ram, not suction, is the primary axis of suction feeding diversity in spiny-rayed fishes

Author:

Longo Sarah J.1,McGee Matthew D.2,Oufiero Christopher E.3,Waltzek Thomas B.4,Wainwright Peter C.1

Affiliation:

1. Department of Evolution and Ecology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA

2. Institute of Ecology and Evolution, University of Bern, Bern, Switzerland 3012

3. Department of Biological Sciences, Towson University, Towson, MD 21252, USA

4. Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, USA

Abstract

Suction feeding fishes exhibit diverse prey capture strategies that vary in their relative use of suction and predator approach (ram), which is often referred to as the ram-suction continuum. Previous research has found that ram varies more than suction distances among species, such that ram accounts for most differences in prey capture behaviors. To determine whether these findings hold at broad evolutionary scales, we collected high-speed videos of 40 species of spiny-rayed fishes (Acanthomorpha) feeding on live prey. For each strike, we calculated the contributions of suction, body ram (swimming), and jaw ram (mouth movement relative to the body) to closing the distance between predator and prey. We confirm that the contribution of suction distance is limited even in this phylogenetically and ecologically broad sample of species, with the extreme suction area of prey capture space conspicuously unoccupied. Instead of a continuum from suction to ram, we find that variation in body ram is the major factor underlying the diversity of prey-capture strategies among suction-feeding fishes. Independent measurement of the contribution of jaw ram revealed that it is an important component of diversity among spiny-rayed fishes, with a number of ecomorphologies relying heavily on jaw ram, including pivot feeding in syngnathiforms, extreme jaw protruders, and benthic sit-and-wait ambush predators. A combination of morphological and behavioral innovations have allowed fish to invade the extreme jaw ram area of prey capture space. We caution that while two-species comparisons may support a ram-suction trade-off, these patterns do not speak to broader patterns across spiny-rayed fishes

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3