Identification of FAM3D as a novel endogenous chemotaxis agonist for the FPRs (formyl peptide receptors)

Author:

Peng Xinjian1,Xu Enquan1,Liang Weiwei1,Pei Xiaolei1,Chen Dixin1,Zheng Danfeng1,Zhang Yang1,Zheng Can1,Wang Pingzhang12,She Shaoping1,Zhang Yan1,Ma Jing1,Mo Xiaoning2,Zhang Yingmei2,Ma Dalong12,Wang Ying12

Affiliation:

1. Department of Immunology, School of Basic Medical Sciences, and Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing 100191, China

2. Center for Human Disease Genomics, Peking University, Beijing 100191, China

Abstract

The family with sequence similarity 3 (FAM3) gene family is a cytokine-like gene family with four members FAM3A, FAM3B, FAM3C, and FAM3D. In this study, we found that FAM3D strongly chemoattracted human peripheral blood neutrophils and monocytes. To identify FAM3D receptor, we used chemotaxis, receptor internalization, calcium flux and radioligand-binding assays in FAM3D-stimulated HEK293 cells that transiently expressed FPR1 or FPR2 to show that FAM3D was a high affinity ligand of formyl peptide receptors (FPR1 and FPR2), both of which were highly expressed on the surface of neutrophils and monocytes/macrophages. After being injected into the mouse peritoneal cavity, FAM3D chemoattracted CD11b+Ly6G+ neutrophils in a short time. In response to FAM3D stimulation, p-ERK and p-p38 were up-regulated in the mouse neutrophils, which could be inhibited by an inhibitor of FPR1 or FPR2. FAM3D was reported to be constitutively expressed in the gastrointestinal tract. We found that FAM3D expression increased significantly in dextran sulfate sodium-induced colitis. Taken together, we propose that FAM3D plays a role in gastrointestinal homeostasis and inflammation through its receptors FPR1 and FPR2.

Funder

National Key Basic Research Program of China

National Natural Science Foundation of China

Beijing Municipal Natural Science Foundation

Specialized Research Fund for the Doctoral Program of Higher Education of China

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3