Dysregulation of ferroportin 1 interferes with spleen organogenesis in polycythaemia mice

Author:

Mok Henry1,Mendoza Miriam1,Prchal Josef T.2,Balogh Péter3,Schumacher Armin1

Affiliation:

1. Department of Molecular and Human Genetics, Baylor College of Medicine,Houston, TX 77030, USA

2. Division of Hematology, Baylor College of Medicine and Michael DeBakey VAH Medical Center, Houston, TX 77030, USA

3. Department of Immunology and Biotechnology, University of Pécs,Pécs, Hungary

Abstract

Regulatory interferences at the iron transporter ferroportin 1 (Fpn1) cause transient defects in iron homeostasis and erythropoiesis in polycythaemia(Pcm) mutant mice. The present study identified decreased Fpn1 expression in placental syncytiotrophoblast cells at late gestation as the mechanism of neonatal iron deficiency in Pcm mutants. Tissue specificity of embryonic Fpn1 dysregulation was evident from concomitant decreases in Fpn1 mRNA and protein expression in placenta and liver, as opposed to upregulation of Fpn1 protein despite decreased transcript levels in spleen, implicating post-transcriptional regulation of Fpn1. Dysregulation of Fpn1 and decreased iron levels in Pcm mutant spleens correlated with apoptotic cell death in the stroma, resulting in a semidominant spleen regression. At 7 weeks of age, a transient increase in spleen size in Pcm heterozygotes reflected a transient erythropoietin-mediated polycythemia. Structurally, Pcm mutant spleens displayed a severe defect in red pulp formation, including disruption of the sinusoidal endothelium, as well as discrete defects in white pulp organization during postnatal development. Reduced functional competence of the Pcmmutant spleen was manifested by an impaired response to chemically induced hemolytic anemia. Thus, aberrant Fpn1 regulation and iron homeostasis interferes with development of the spleen stroma during embryogenesis,resulting in a novel defect in spleen architecture postnatally.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3