Adaptation and failure of pancreatic β cells in murine models with different degrees of metabolic syndrome

Author:

Medina-Gomez Gema12,Yetukuri Laxman3,Velagapudi Vidya3,Campbell Mark1,Blount Margaret1,Jimenez-Linan Mercedes4,Ros Manuel1,Orešič Matej3,Vidal-Puig Antonio1

Affiliation:

1. University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK

2. Present address: Departamento de Bioquímica, Fisiología y Genética Molecular, Universidad Rey Juan Carlos, Facultad de Ciencias de la Salud, Avda. de Atenas s/n, 28922 Alcorcón, Madrid, Spain

3. VTT Technical Research Centre of Finland, Tietotie 2, Espoo, P.O. Box1500, FIN-02044 VTT, Finland

4. Department of Histopathology, Addenbrooke’s Hospital, University of Cambridge, Cambridge, CB2 0QQ

Abstract

SUMMARY The events that contribute to the expansion of β-cell mass and enhanced β-cell function in insulin-resistant states have not been elucidated fully. Recently, we showed that β-cell adaptation failed dramatically in adult, insulin-resistant POKO mice, which contrasts with the appropriate expansion of β cells in their ob/ob littermates. Thus, we hypothesised that characterisation of the islets in these mouse models at an early age should provide a unique opportunity to: (1) identify mechanisms involved in sensing insulin resistance at the level of the β cells, (2) identify molecular effectors that contribute to increasing β-cell mass and function, and (3) distinguish primary events from secondary events that are more likely to be present at more advanced stages of diabetes. Our results define the POKO mouse as a model of early lipotoxicity. At 4 weeks of age, it manifests with inappropriate β-cell function and defects in proliferation markers. Other well-recognised pathogenic effectors that were observed previously in 16-week-old mice, such as increased reactive oxygen species (ROS), macrophage infiltration and endoplasmic reticulum (ER) stress, are also present in both young POKO and young ob/ob mice, indicating the lack of predictive power with regards to the severity of β-cell failure. Of interest, the relatively preserved lipidomic profile in islets from young POKO mice contrasted with the large changes in lipid composition and the differences in the chain length of triacylglycerols in the serum, liver, muscle and adipose tissue in adult POKO mice. Later lipotoxic insults in adult β cells contribute to the failure of the POKO β cell. Our results indicate that the rapid development of insulin resistance and β-cell failure in POKO mice makes this model a useful tool to study early molecular events leading to insulin resistance and β-cell failure. Furthermore, comparisons with ob/ob mice might reveal important adaptive mechanisms in β cells with either therapeutic or diagnostic potential.

Publisher

The Company of Biologists

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology and Microbiology (miscellaneous),Medicine (miscellaneous),Neuroscience (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3