Fiber polymorphism in skeletal muscles of the American lobster,Homarus americanus: continuum between slow-twitch (S1) and slow-tonic (S2) fibers

Author:

Medler Scott1,Lilley Travis1,Mykles Donald L.1

Affiliation:

1. Department of Biology, Colorado State University, Fort Collins, CO 80523, USA

Abstract

SUMMARYIn recent years, an increasing number of studies has reported the existence of single fibers expressing more than one myosin heavy chain (MHC) isoform at the level of fiber proteins and/or mRNA. These mixed phenotype fibers, often termed hybrid fibers, are currently being recognized as the predominant fiber type in many muscles, and the implications of these findings are currently a topic of great interest. In a recent study, we reported single fibers from the cutter claw closer muscle of lobsters that demonstrated a gradation between the slow-twitch (S1) and slow-tonic (S2) muscle phenotype. In the present study, we focused on S1 and S2fibers from the superficial abdominal muscles of the lobster as a model to study the continuum among muscle fiber types. Complementary DNAs (cDNA)encoding an S2 isoform of myosin heavy chain (MHC) and an S2 isoform of tropomyosin (Tm) were isolated from the superficial abdominal flexor muscles of adult lobsters. These identified sequences were used to design PCR primers used in conjunction with RT-PCR and real-time PCR to measure expression levels of these genes in small muscle samples and single fibers. The relative expression of the corresponding S1 MHC and S1 Tm isoforms was measured in the same samples with PCR primers designed according to previously identified sequences. In addition, we measured the relative proportions of MHC, troponin (Tn) T and I protein isoforms present in the same samples to examine the correlation of these proteins with one another and with the MHC and Tm mRNAs. These analyses revealed significant correlations among the different myofibrillar proteins,with the S1 and S2 fibers being characterized by a whole assemblage of myofibrillar isoforms. However, they also showed that small muscle samples, and more importantly single fibers, existed as a continuum from one phenotype to another. Most fibers possessed mixtures of mRNA for MHC isoforms that were unexpected based on protein analysis. These findings illustrate that muscle fibers in general may possess a phenotype that is intermediate between the extremes of `pure' fiber types, not only at the MHC level but also in terms of whole myofibrillar assemblages. This study supports and extends our recent observations of mixed phenotype fibers in lobster claw and leg muscles. The existence of single fiber polymorphism in an invertebrate species underscores the generality of the phenomenon in skeletal muscles and emphasizes the need for an understanding of the proximal causes and physiological consequences of these intermediate fiber types.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3