Positive regulation of melanin pigmentation by two key substrates of the melanogenic pathway, L-tyrosine and L-dopa

Author:

Slominski A.1,Moellmann G.1,Kuklinska E.1,Bomirski A.1,Pawelek J.1

Affiliation:

1. Department of Dermatology, Yale University School of Medicine, New Haven, CT 06510.

Abstract

We describe results demonstrating the positive regulation of melanogenesis by two substrates of the melanogenic pathway. We have found that L-tyrosine and L-dihydroxyphenylalanine (L-dopa), whose metabolic fates are affected by the activity of that pathway, can also act as its regulators. In living pigment cells, tyrosinase (EC 1.14.18.1), a crucial and rate-limiting enzyme of melanogenesis, acts in subcellular organelles known as melanosomes. Melanin is laid down only in these organelles. We demonstrate that supplementing Ham's F-10 medium with additional L-tyrosine or L-dopa during the culture of amelanotic Bomirski hamster melanoma cells results in a rapid increase in melanin formation, which is not simply due to greater availability of substrate. There is a rapid increase in tyrosinase activity and a large scale synthesis of melanosomes. The effects of L-tyrosine and L-dopa are prevented by the addition of cycloheximide. The actions of L-tyrosine and L-dopa are specific in that under similar conditions D-tyrosine, D-dopa, N-acetyl-L-tyrosine, L-phenylalanine, L-tryptophan and L-valine have little or no effect. The two substrates, L-tyrosine and L-dopa, appear to act through related but distinct mechanisms. Our findings provide an example of a little-known phenomenon: regulation of a differentiated eukaryotic phenotype through positive control by substrates in the pathway.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3