Opsin1-2, Gqα and arrestin levels at Limulus rhabdoms are controlled by diurnal light and a circadian clock

Author:

Battelle Barbara-Anne1,Kempler Karen E.1,Parker Alexander K.1,Gaddie Christina D.1

Affiliation:

1. Whitney Laboratory for Marine Bioscience, University of Florida

Abstract

Summary Dark and light adaptation in photoreceptors involve multiple processes including those which change protein concentrations at photosensitive membranes. Light and dark-adaptive changes in protein levels at rhabdoms have been described in detail in white eyed Drosophila maintained under artificial light. Here we tested whether protein levels at rhabdoms change significantly in the highly pigmented lateral eyes of wild caught Limulus maintained in natural diurnal illumination and whether these changes are under circadian control. We found that rhabdomeral levels of opsins (Ops 1-2), the G protein activated by rhodopsin (Gqα) and arrestin change significantly day to night and that nighttime levels of each protein at rhabdoms are significantly influenced by signals from the animal's central circadian clock. Clock input at night increases Ops1-2 and Gqα and decreases arrestin levels at rhabdoms. Clock input is also required for a rapid decrease in rhabdomeral Ops1-2 beginning at sunrise. We found further that dark-adaptation during the day and night are not equivalent. During daytime dark-adaptation, when clock input is silent, the increase of Ops1-2 at rhabdoms is small and Gqα levels do not increase. However, increases in Ops1-2 and Gqα at rhabdoms are enhanced during daytime dark-adaption by treatments which elevate cAMP in photoreceptors suggesting the clock influences dark-adaptive increases in Ops1-2 and Gqα at Limulus rhabdoms by activating cAMP-dependent processes. The circadian regulation of Ops1-2 and Gqα levels at rhabdoms probably has a dual role: to increase retinal sensitivity at night and to protect photoreceptors from light damage during the day.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3