TRBP maintains mammalian embryonic neural stem cell properties by enhancing the Notch signaling pathway as a novel transcriptional coactivator

Author:

Byun Sung-Hyun1,Kim Juwan1,Han Dasol1,Kwon Mookwang1,Cho Jae Youl1,Ng Hui Xuan2,Pleasure Samuel J.2,Yoon Keejung1ORCID

Affiliation:

1. College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea

2. Department of Neurology, University of California San Francisco, San Francisco, California, USA

Abstract

Transactivation response element RNA-binding protein (TRBP) is known to play important roles in human immunodeficiency virus (HIV) replication and microRNA biogenesis. However, recent studies implicate TRBP in a variety of biological processes as a mediator for cross-talk between signal transduction pathways. Here, we provide the first evidence that TRBP is required for efficient neurosphere formation, and expression of neural stem cell markers and Notch target genes in primary neural progenitor cells in vitro. Consistent with this, introduction of TRBP into the mouse embryonic brain in utero increased the fraction of cells expressing Sox2 in the ventricular zone (VZ). We also show TRBP physically interacts with the Notch transcriptional coactivation complex through C promoter binding factor 1 (CBF1) and strengthens the association between the Notch intracellular domain (NICD) and CBF1, resulting in increased NICD recruitment to the promoter region of a Notch target gene. Our data indicate that TRBP is a novel transcriptional coactivator of the Notch signaling pathway playing an important role in neural stem cell regulation during mammalian brain development.

Funder

National Research Foundation (NRF) funded by the Ministry of Science, ICT and Future Planning

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3