E-cadherin intron 2 contains cis-regulatory elements essential for gene expression

Author:

Stemmler Marc P.1,Hecht Andreas2,Kemler Rolf1

Affiliation:

1. Department of Molecular Embryology, Max-Planck Institute of Immunobiology,Stuebeweg 51, D-79108 Freiburg, Germany

2. Andreas Hecht, Institute of Molecular Medicine and Cell Science, University of Freiburg, Stefan-Meier-Strasse 17, D-79104 Freiburg, Germany

Abstract

Cadherin-mediated cell-cell adhesion plays important roles in mouse embryonic development, and changes in cadherin expression are often linked to morphogenetic events. For proper embryonic development and organ formation,the expression of E-cadherin must be tightly regulated. Dysregulated expression during tumorigenesis confers invasiveness and metastasis. Except for the E-box motifs in the E-cadherin promoter, little is known about the existence and location of cis-regulatory elements controlling E-cadherin gene expression. We have examined putative cis-regulatory elements in the E-cadherin gene and we show a pivotal role for intron 2 in activating transcription. Upon deleting the genomic intron 2 entirely, the E-cadherin locus becomes completely inactive in embryonic stem cells and during early embryonic development. Later in development, from E11.5 onwards, the locus is activated only weakly in the absence of intron 2 sequences. We demonstrate that in differentiated epithelia, intron 2 sequences are required both to initiate transcriptional activation and additionally to maintain E-cadherin expression. Detailed analysis also revealed that expression in the yolk sac is intron 2 independent, whereas expression in the lens and the salivary glands absolutely relies on cis-regulatory sequences of intron 2. Taken together, our findings reveal a complex mechanism of gene regulation, with a vital role for the large intron 2.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3