Impaired cumulus mucification and female sterility in tumor necrosis factor-induced protein-6 deficient mice

Author:

Fülöp Csaba1,Szántó Sándor2,Mukhopadhyay Durba1,Bárdos Tamás2,Kamath Rajesh V.2,Rugg Marylin S.3,Day Anthony J.3,Salustri Antonietta4,Hascall Vincent C.1,Glant Tibor T.2,Mikecz Katalin2

Affiliation:

1. Section of Connective Tissue Biology, Department of Biomedical Engineering,The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA

2. Section of Biochemistry and Molecular Biology, Departments of Orthopedic Surgery and Biochemistry, Rush University at Rush-Presbyterian-St. Luke's Medical Center, Chicago, Illinois 60612, USA

3. MRC, Immunochemistry Unit, Department of Biochemistry, University of Oxford,OX1 3QU Oxford, UK

4. Department of Public Health and Cell Biology, University of Rome `Tor Vergata', 00133 Rome, Italy

Abstract

Mucification of the cumulus layer around the oocyte is an obligatory process for female fertility. Tumor necrosis factor-induced protein-6 (TNFIP6 or TSG6) has been shown to be specifically expressed during this process. We have generated TNFIP6-deficient mice and tested the ability of their cumulus cells to undergo mucification. Cumulus cell-oocyte complexes fail to expand in TNFIP6-deficient female mice because of the inability of the cumulus cells to assemble their hyaluronan-rich extracellular matrix. The impaired cumulus matrix formation is due to the lack of covalent complexes between hyaluronan and the heavy chains of the inter-α-trypsin inhibitor family. As a consequence, TNFIP6-deficient females are sterile. Cultured TNFIP6-deficient cumulus cell-oocyte complexes also fail to expand when stimulated with dibutyryl cyclic AMP or epidermal growth factor. Recombinant TNFIP6 is able to catalyze the covalent transfer of heavy chains to hyaluronan in a cell-free system, restore the expansion of Tnfip6-null cumulus cell-oocyte complexes in vitro, and rescue the fertility in Tnfip6-null females. These results provide clear evidence that TNFIP6 is a key catalyst in the formation of the cumulus extracellular matrix and indispensable for female fertility.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 336 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3