Detergent-resistant membrane domains but not the proteasome are involved in the misfolding of a PrP mutant retained in the endoplasmic reticulum

Author:

Campana Vincenza12,Sarnataro Daniela1,Fasano Carlo2,Casanova Philippe2,Paladino Simona1,Zurzolo Chiara12

Affiliation:

1. Dipartimento di Biologia e Patologia Cellulare e Molecolare and CEINGE, Centro di Biotecnologie Avanzate, Università degli Studi di Napoli `Federico II', via Pansini 5, 80131 Napoli, Italy

2. Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris CEDEX 15, France

Abstract

Inherited prion diseases are neurodegenerative pathologies related to genetic mutations in the prion protein (PrP) gene, which favour the conversion of PrPC into a conformationally altered pathogenic form, PrPSc. The molecular basis of PrPC/PrPSc conversion, the intracellular compartment where it occurs and how this process leads to neurological dysfunction are not yet known. We have studied the intracellular synthesis, degradation and localization of a PrP mutant associated with a genetic form of Creutzfeldt-Jakob disease (CJD), PrPT182A, in transfected FRT cells. PrPT182A is retained in the endoplasmic reticulum (ER), is mainly associated with detergent-resistant microdomains (DRMs) and is partially resistant to proteinase K digestion. Although an untranslocated form of this mutant is polyubiquitylated and undergoes ER-associated degradation, the proteasome is not responsible for the degradation of its misfolded form, suggesting that it does not have a role in the pathogenesis of inherited diseases. On the contrary, impairment of PrPT182A association with DRMs by cholesterol depletion leads to its accumulation in the ER and substantially increases its misfolding. These data support the previous hypothesis that DRMs are important for the correct folding of PrP and suggest that they might have a protective role in pathological scrapie-like conversion of PrP mutants.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3