FGF/MAPK/Ets signaling renders pigment cell precursors competent to respond to Wnt signal by directly controllingCi-Tcftranscription

Author:

Squarzoni Paola1,Parveen Fateema1,Zanetti Laura1,Ristoratore Filomena1,Spagnuolo Antonietta1

Affiliation:

1. Cellular and Developmental Biology Laboratory, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy

Abstract

FGF and Wnt pathways constitute two fundamental signaling cascades, which appear to crosstalk in cooperative or antagonistic fashions in several developmental processes. In vertebrates, both cascades are involved in pigment cell development, but the possible interplay between FGF and Wnt remains to be elucidated. In this study, we have investigated the role of FGF and Wnt signaling in development of the pigment cells in the sensory organs of C. intestinalis. This species possesses the basic features of an ancestral chordate, thus sharing conserved molecular developmental mechanisms with vertebrates. Chemical and targeted perturbation approaches revealed that a FGF signal, spreading in time from early gastrulation to neural tube closure, is responsible for pigment cell precursor induction. This signal is transmitted via the MAPK pathway, which activates the Ci-Ets1/2 transcription factor. Targeted perturbation of Ci-TCF, a downstream factor of the canonical Wnt pathway, indicated its contribution to pigment cell differentiation Furthermore, analyses of the Ci-Tcf regulatory region revealed the involvement of the FGF effector, Ci-Ets1/2, in Ci-Tcf transcriptional regulation in pigment cell precursors. Our results indicate that both FGF and the canonical Wnt pathways are involved in C. intestinalis pigment cell induction and differentiation. Moreover, we present a case of direct transcriptional regulation exerted by the FGF signaling cascade, via the MAPK-ERK-Ets1/2, on the Wnt downstream gene Ci-Tcf. Several examples of FGF/Wnt signaling crosstalk have been described in different developmental processes; however, to our knowledge, FGF-Wnt cross-interaction at the transcriptional level has never been previously reported. These findings further contribute to clarifying the multitude of FGF-Wnt pathway interactions.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3