Parasite-induced alterations of sensorimotor pathways in gammarids: collateral damage of neuroinflammation?

Author:

Helluy Simone1

Affiliation:

1. Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA

Abstract

Summary Some larval helminths alter the behavior of their intermediate hosts in ways that favor the predation of infected hosts, thus enhancing trophic transmission. Gammarids (Crustacea: Amphipoda) offer unique advantages for the study of the proximate factors mediating parasite-induced behavioral changes. Indeed, amphipods infected by distantly related worms (acanthocephalans, cestodes and trematodes) encysted in different microhabitats within their hosts (hemocoel, brain) present comparable, chronic, behavioral pathologies. In order to evaluate the potential connection between behavioral disturbances and immune responses in parasitized gammarids, this Review surveys the literature bearing on sensorimotor pathway dysfunctions in infected hosts, on the involvement of the neuromodulator serotonin in altered responses to environmental stimuli, and on systemic and neural innate immunity in arthropods. Hemocyte concentration and phenoloxidase activity associated with melanotic encapsulation are depressed in acanthocephalan-manipulated gammarids. However, other components of the arsenal deployed by crustaceans against pathogens have not yet been investigated in helminth-infected gammarids. Members of the Toll family of receptors, cytokines such as tumor necrosis factors (TNFs), and the free radical nitric oxide are all implicated in neuroimmune responses in crustaceans. Across animal phyla, these molecules and their neuroinflammatory signaling pathways are touted for their dual beneficial and deleterious properties. Thus, it is argued that neuroinflammation might mediate the biochemical events upstream of the serotonergic dysfunction observed in manipulated gammarids – a parsimonious hypothesis that could explain the common behavioral pathology induced by distantly related parasites, both hemocoelian and cerebral.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3