Affiliation:
1. Department of Biology, Birkbeck College, London, UK.
Abstract
Previous work has shown that a peptide related to arginine vasopressin is present in the suboesophageal ganglion of the locust, Locusta migratoria. This peptide was determined to be an anti-parallel dimer of the nonapeptide Cys-Leu-Ile-Thr-Asn-Cys-Pro-Arg-Gly-NH2 and was reported to stimulate cyclic AMP production and fluid secretion in a combined Malpighian tubules and midgut preparation from locusts. For these reasons the peptide has been called the arginine-vasopressin-like insect diuretic hormone (AVP-like IDH). Recently, a second diuretic peptide (Locusta-DP), which is related to corticotropin releasing factor, has been identified: this is a potent stimulant of fluid secretion and cyclic AMP production by isolated locust tubules. Because water balance in insects is likely to be controlled by a cocktail of hormones acting on both Malpighian tubules and hindgut, this study directly compares the activity of these two peptides in fluid secretion and cyclic AMP production bioassays on one target organ, the isolated Malpighian tubule of Locusta migratoria. Locusta-DP was synthesised directly, whereas the dimeric AVP-like IDH was obtained by oxidation of a synthetic nonapeptide monomer. Products were separated by RP-HPLC and their structures unequivocally confirmed by enzymatic digestion, sequence analysis and electrospray mass spectrometry. We show that Locusta-DP causes strong stimulation of fluid secretion and cyclic AMP production, whereas the AVP-like IDH has no effect in either assay. These findings are discussed in the light of recent work on the anatomy and physiology of the vasopressin-like immunoreactive (VPLI) neurones in the suboesophageal ganglion of Locusta migratoria, the proposed source of the AVP-like peptide.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献