A comparison of the effects of two putative diuretic hormones from Locusta migratoria on isolated locust malpighian tubules

Author:

Coast G. M.1,Rayne R. C.1,Hayes T. K.1,Mallet A. I.1,Thompson K. S.1,Bacon J. P.1

Affiliation:

1. Department of Biology, Birkbeck College, London, UK.

Abstract

Previous work has shown that a peptide related to arginine vasopressin is present in the suboesophageal ganglion of the locust, Locusta migratoria. This peptide was determined to be an anti-parallel dimer of the nonapeptide Cys-Leu-Ile-Thr-Asn-Cys-Pro-Arg-Gly-NH2 and was reported to stimulate cyclic AMP production and fluid secretion in a combined Malpighian tubules and midgut preparation from locusts. For these reasons the peptide has been called the arginine-vasopressin-like insect diuretic hormone (AVP-like IDH). Recently, a second diuretic peptide (Locusta-DP), which is related to corticotropin releasing factor, has been identified: this is a potent stimulant of fluid secretion and cyclic AMP production by isolated locust tubules. Because water balance in insects is likely to be controlled by a cocktail of hormones acting on both Malpighian tubules and hindgut, this study directly compares the activity of these two peptides in fluid secretion and cyclic AMP production bioassays on one target organ, the isolated Malpighian tubule of Locusta migratoria. Locusta-DP was synthesised directly, whereas the dimeric AVP-like IDH was obtained by oxidation of a synthetic nonapeptide monomer. Products were separated by RP-HPLC and their structures unequivocally confirmed by enzymatic digestion, sequence analysis and electrospray mass spectrometry. We show that Locusta-DP causes strong stimulation of fluid secretion and cyclic AMP production, whereas the AVP-like IDH has no effect in either assay. These findings are discussed in the light of recent work on the anatomy and physiology of the vasopressin-like immunoreactive (VPLI) neurones in the suboesophageal ganglion of Locusta migratoria, the proposed source of the AVP-like peptide.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3