Proprioceptors monitoring forces in a locust hind leg during kicking form negative feedback loops with flexor tibiae motor neurons

Author:

Sasaki Ken1,Burrows Malcolm2

Affiliation:

1. Present address: Insect Neurobiology Laboratory, Physiology and Genetic Regulation Department, National Institute of Agrobiological Sciences, Tsukuba,Ibaraki 305-8634, Japan

2. Department of Zoology, University of Cambridge, Downing Street,Cambridge CB2 3EJ, UK

Abstract

SUMMARYIn preparation for jumping and kicking, a locust slowly generates large forces in the femoral muscles of its hind legs and stores them in elastic distortions of the tendons and femoral cuticle. At the femoro—tibial joints, the semi-lunar processes are bent, the cuticle of the dorsal distal femur is crumpled, and the femur is expanded in a mediolateral direction. We have analysed whether these distortions are monitored by sense organs and whether the information they provide is used to limit the forces generated and thus prevent structural damage to the joint.The two sensory neurons comprising the lump receptor lie in a groove in the ventral part of the distal femur. The sensory neurons spike if force is applied to the flexor tendon when the joint is fully flexed, but not when it is extended. They also spike as the tendon of the flexor muscle slides into the ventral femoral groove when the tibia is fully flexed during the co-contraction phase of kicking. Their spike frequency correlates with the extent of bending of a semi-lunar process that provides a quantifiable measure of the joint distortions. If the tibia is not fully flexed, however, then muscle contractions still cause distortions of the joint but these are not signalled by sensory spikes from the lump receptor. The lump receptor,therefore, does not respond primarily to the joint distortions but to the movements or force in the flexor tendon.Contractions of the flexor tibiae muscle caused by spikes in individual flexor motor neurons can evoke spikes in sensory neurons from the lump receptor when the joint is fully flexed. In turn, the sensory neurons cause a hyperpolarisation in particular flexor motor neurons in a polysynaptic negative feedback loop. The lump receptor could, therefore, regulate the output of the flexor motor neurons and, thus, limit the amount of force generated during co-contraction. It may also contribute to the inhibition of the flexors at the end of co-contraction that allows rapid kicking movements to occur.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference39 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3