Coordinated contractions effectively expel water from the aquiferous system of a freshwater sponge

Author:

Elliott Glen R. D.1,Leys Sally P.1

Affiliation:

1. Department of Biological Sciences, University of Alberta, Edmonton,Alberta T6G 2E9, Canada

Abstract

SUMMARY In response to mechanical stimuli the freshwater sponge Ephydatia muelleri (Demospongiae, Haplosclerida, Spongillidae) carries out a series of peristaltic-like contractions that is effective in expelling clumps of waste material from the aquiferous system. Rates of contraction depend on the region of tissue they are propagating through: 0.3–1 μm s–1 in the peripheral canals, 1–4 μm s–1 in central canals, and 6–122 μm s–1 in the osculum. Faster events include twitches of the entire sponge choanosome and contraction of the sheet-like apical pinacoderm that forms the outer surface of the animal. Contraction events are temporally and spatially coordinated. Constriction of the tip of the osculum leads to dilation of excurrent canals; fields of ostia in the apical pinacoderm close in unison just prior to contraction of the choanosome, apical pinacoderm and osculum. Relaxation returns the osculum, canals and the apical pinacoderm to their normal state, and three such coordinated `inflation–contraction'responses typically follow a single stimulus. Cells in the mesohyl arrest crawling as a wave of contraction passes, suggesting an extracellular signal may pass between cells. Bundles of actin filaments traverse endopinacocytes of the apical pinacoderm. Actin-dense plaques join actin bundles in adjacent pinacocytes to form continuous tracts spanning the whole sponge. The orchestrated and highly repeatable series of contractions illustrates that cellular sponges are capable of coordinated behavioural responses even in the absence of neurons and true muscle. Propagation of the events through the pinacocytes also illustrates the presence of a functional epithelium in cellular sponges. These results suggest that control over a hydrostatic skeleton evolved prior to the origin of nerves and true muscle.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 124 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3