Critical thermal maxima in knockdown-selected Drosophila: are thermal endpoints correlated?

Author:

Folk Donna G.1,Hoekstra Luke A.1,Gilchrist George W.1

Affiliation:

1. Department of Biology, College of William and Mary, Williamsburg, VA 23187, USA

Abstract

SUMMARY To explore the correlation of traits linked to thermotolerance, we compared three thermal endpoints (knockdown temperature and two critical thermal maxima) among replicate populations of Drosophila melanogasterselected for high, or low, knockdown temperature. The high knockdown flies maintain normal posture and locomotor ability within a knockdown column at temperatures ⩾40°C, whereas the low knockdown flies fall out of the column at much cooler temperatures (∼35°C, on average). The critical thermal maximum (CTmax) for respiratory control in the selected knockdown populations was determined by analyzing CO2output of individuals during exposure to a temperature ramp (from 30°C to>45°C) and was indicated by an abrupt alteration in the pattern of CO2 release. The CTmax for locomotor function was determined by monitoring activity (concurrent with CO2analysis) during the temperature ramp and was marked by the abrupt cessation of activity. We hypothesized that selection for high knockdown temperature may cause an upward shift in CTmax, whereas selection for low knockdown may lower CTmax. Correlations among the three thermal endpoints varied between the high and low knockdown flies. Finally, we compared metabolic profiles, as well as Q10 values, among the high and low knockdown males and females during the temperature ramp.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3