Correlated onset and patterning of proopiomelanocortin gene expression in embryonic Xenopus brain and pituitary

Author:

Hayes W.P.1,Loh Y.P.1

Affiliation:

1. Section on Cellular Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892.

Abstract

To identify cellular interactions that underlie the spatially appropriate transcription of neural genes, we characterized the embryonic development of proopiomelanocortin (POMC) gene expression in Xenopus laevis using in situ hybridization histochemistry. This has led to the establishment of a unique model system for studying how a neuropeptide gene program in four distinct cell groups is set up in pituitary and forebrain. The embryonic onset and patterning of POMC expression was found to be spatially and temporally correlated inside and outside the brain. The first POMC cells in the pituitary primordium and diencephalon were juxtaposed near the infundibulum at stage 29/30, indicating they undergo molecular differentiation much earlier than previously reported for this system. By stage 31/32, many more POMC cells appeared in the morphologically undifferentiated pituitary primordium and brain. In fact, these cells were seen throughout the presumptive anterior and intermediate lobes of the pituitary and posterior diencephalon at the same time that the pituitary primordium is translocating ventral to diencephalon. By stage 39/40, coordinated morphogenesis produced the adult pattern of POMC cells localized in distinct anterior and intermediate pituitary lobes and two diencephalic nuclei. We propose in light of these findings that embryonic cells in the pituitary primordium and brain are simultaneously induced to transcribe the POMC gene, possibly as a result of reciprocal brain-pituitary interactions.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3