Regulations in the induction of the organized neural system in amphibian embryos

Author:

Yamada T.1

Affiliation:

1. Swiss Institute for Experimental Cancer Research, Epalinges.

Abstract

Some of the recent data on the induction of the neural system in amphibian embryos are reviewed, utilizing a model, according to which two basic events regulate in this system: (1) ectodermal dorsalization, which occurs all over the induced region of the ectoderm and is responsible for the neural and mesectodermal pathways and (2) caudalization, which occurs only on the posterior level of dorsalized ectoderm and is responsible for the posterior mode of induced differentiation, functioning as a gradient with the apex at the posterior end of the embryo. Dorsalization of ectoderm can be caused by treatment with Con A or TPA, both of which are potential mitogens. Not only after the treatment with TPA, but also during normal dorsalization, the activation of protein kinase C occurs in responding cells. The possibility is suggested that an early step of mitogenic transmembrane signal transduction induced by a growth factor regulates dorsalization in intact embryos. Ectodermal dorsalization is responsible for the appearance of neuronal and glial cell lineages, and independent of the ECM network formed on the internal surface of the responding ectoderm during gastrulation. In caudalization, a series of experiments suggests that the regulatory role is played by the transcript of the mesodermal posterior homeobox gene, Xhox 3. The expression of this gene in time and location closely coincides with the pattern of convergent extension, one type of morphogenetic movement, which is expressed in a posterior-anterior gradient. This directed cell motility is responsible for the formation of the body axis of vertebrates, and was shown to be involved in caudalization by earlier induction experiments in urodele embryos.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neural induction in embryos;Development, Growth and Differentiation;1998-08

2. Genetic evidence for posterior specification by convergent extension in the Xenopus embryo;Development, Growth and Differentiation;1998-04

3. Tuneo Yamada (1909-1997): The last pioneer exploring embryonic induction;Development, Growth and Differentiation;1998-04

4. 3 Development of Neural Crest in Xenopus;Current Topics in Developmental Biology;1998

5. Determination, induction and pattern formation in early amphibian embryos;Development, Growth and Differentiation;1996-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3