Pattern of the insulin-like growth factor II gene expression during early mouse embryogenesis

Author:

Lee J.E.1,Pintar J.1,Efstratiadis A.1

Affiliation:

1. Department of Genetics and Development, Columbia University, New York, NY 10032.

Abstract

The mouse insulin-like growth factor II (IGF-II) gene encodes a polypeptide that plays a role in embryonic growth. We have examined the temporal and spatial pattern of expression of this gene in sections of the mouse conceptus between embryonic days 4.0 and 8.5 by in situ hybridization. Abundant IGF-II transcripts were detected in all the trophectodermal derivatives, after implantation. Labeling was then observed in primitive endoderm, but was transient and disappeared after formation of the yolk sac. Expression was next detected in extraembryonic mesoderm at the early primitive streak stage. Labeling in the embryo proper appeared first at the late primitive streak/neural plate stage in lateral mesoderm and in anterior-proximal cells located between the visceral endoderm and the most cranial region of the embryonic ectoderm. The position of the latter cells suggests that their descendants are likely to participate in the formation of the heart and the epithelium of the ventral and lateral walls of the foregut, where intense labeling was observed at the neural fold stage. Hybridization was also detected in cranial mesenchyme, including neural crest cells. The intensity of hybridization signal increased progressively in paraxial (presomitic and somitic) mesoderm, while declining in the ectoplacental cone. The neuroectoderm and surface ectoderm did not exhibit hybridization at any stage. Immunohistochemical analysis indicated co-localization of IGF-II transcripts, translated pre-pro-IGF-II, and the cognate IGF-II/mannose-6-phosphate receptor. These correlations are consistent with the hypothesis that IGF-II has an autocrine function.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3