Diversity and evolution of sound production in the social behavior of Chaetodon butterflyfishes

Author:

Tricas Timothy C.12,Boyle Kelly S.12

Affiliation:

1. Department of Biology, University of Hawaii, 2538 The Mall, Honolulu, Hawaii 96822 USA

2. Hawaii Institute of Marine Biology, 46-007 Lilipuna Road, Kaneohe, Hawaii 96744 USA

Abstract

Fish produce context-specific sounds during social communication but it is not known how acoustic behaviors have evolved in relation to specializations of the auditory system. Butterflyfishes (family Chaetodontidae) have a well-defined phylogeny and produce pulsed communication sounds during social interactions on coral reefs. Recent work indicates two sound production mechanisms exist in the bannerfish clade and others for one species in the Chaetodon clade which is distinguished by an auditory specialization, the laterophysic connection (LC). We determine the kinematic action patterns associated with sound production during social interactions in four Chaetodon subgenera and the non-laterophysic Forcipiger. Some Chaetodon species share the head bob acoustic behavior with Forcipiger which along with other sounds in the 100-1000 Hz spectrum are likely adequate to stimulate the ear, swim bladder or LC of a receiver fish. In contrast, only Chaetodon produced the tail slap sound which involves a 1-30 Hz hydrodynamic pulse that likely stimulates the receiver's ear and lateral line at close distances, but neither the swim bladder nor LC. Reconstructions of ancestral character states appear equivocal for the head bob and divergent for the tail slap acoustic behaviors. Independent contrast analysis shows a correlation between sound duration and stimulus intensity characters. The intensity of the tail slap and body pulse sound in Chaeotodon is correlated with body size and can provide honest communication signals. Future studies on fish acoustic communication should investigate low frequency and infrasound acoustic fields to understand the integrated function of the ear and lateral line, and their evolutionary patterns.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3