Regulation of promoter occupancy during activation of cryptobiotic embryos from the crustacean Artemia franciscana

Author:

Martinez-Lamparero Ana1,Casero Marie-Carmen1,Ortiz-Caro Javier1,Sastre Leandro1

Affiliation:

1. Instituto de Investigaciones Biomédicas CSIC/UAM, C/ Arturo Duperier No. 4, 28029 Madrid, Spain

Abstract

SUMMARY Artemia franciscana embryos can suspend their development and metabolism at the gastrula stage to enter a state of cryptobiosis, forming cysts. Embryonic development and metabolism can be resumed under favorable environmental conditions to give rise to free-swimming larvae or nauplii. The mechanisms that mediate these processes are not completely known. Here, we report our studies of the mechanisms that regulate transcriptional activation upon exiting cryptobiosis. Regulatory regions of several A. franciscana gene promoters were identified. Functional analyses in mammalian cells allowed the identification of transcriptional activator regions in the Actin302 promoter and in promoter 2 of the sarco/endoplasmic reticulum Ca2+-ATPase-encoding gene. These regions were shown to specifically bind protein factors from nuclear extracts of A. franciscana nauplii by means of electrophoretic mobility shift assays. Several protein-binding regions were also detected by DNase I protection analysis in the promoters of the genes encoding the α1 subunit of Na+/K+-ATPase, actin 302 and sarco/endoplasmic reticulum Ca2+-ATPase. Specific DNA-binding proteins in nauplius nuclear extracts were detected for all the promoter regions analyzed. These proteins were either not present in cyst nuclear extracts or were present in much smaller concentrations. Three of the five regions analyzed also bound proteins present in cyst nuclear extracts. These data indicate that transcriptional activation upon exiting cryptobiosis in A. franciscana involves the expression/activation of DNA-binding transcription factors that are not present in cyst nuclei

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3