Requirement of phosphatidic acid binding for distribution of the bacterial protein Lpg1137 targeting syntaxin 17

Author:

Murata Misaki1ORCID,Kanamori Riku1,Kitao Tomoe2,Kubori Tomoko23,Nagai Hiroki23,Tagaya Mitsuo1,Arasaki Kohei1ORCID

Affiliation:

1. School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan

2. Department of Microbiology, Graduate School of Medicine, Gifu University, 1-1 Yanagito, Gifu 501-1194, Japan

3. G-CHAIN, Gifu University, 1-1 Yanagito, Gifu 501-1194, Japan

Abstract

ABSTRACT The gram-negative bacterium, Legionella pneumophila is known to manipulate the host cellular functions. L. pneumophila secretes bacterial proteins called Legionella effectors into the host cytosol that are necessary for these manipulations. The Legionella effector Lpg1137 was identified as a serine protease responsible for the degradation of syntaxin 17 (Stx17). However, how Lpg1137 specifically recognizes and degrades Stx17 remained unknown. Given that Stx17 is localized in the ER, mitochondria-associated membrane (MAM), and mitochondria, Lpg1137 likely distributes to these compartments to recognize Stx17. Here, we show that the C-terminal region of Lpg1137 binds to phosphatidic acid (PA), a MAM and mitochondria-enriched phospholipid, and that this binding is required for the correct intracellular distribution of Lpg1137. Two basic residues in the C-terminal region of Lpg1137 are required for PA binding and their mutation causes mislocalization of Lpg1137. This mutant also fails to degrade Stx17 while retaining protease activity. Taken together, our data reveal that Lpg1137 utilizes PA for its distribution to the membranous compartments in which Stx17 is localized.

Funder

Japan Society for the Promotion of Science

Ministry of Education, Culture, Sports, Science and Technology

Uehara Memorial Foundation

Takeda Science Foundation

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3