Unveiling a novel serpinB2-tripeptidyl peptidase II signaling axis during senescence

Author:

Liao Chia-Li1,Hu Rong-Chi1,Liao Min-Shiang2,Chen Yi-Ju3,Chen Ya-Ping2,Hsieh Hsi-Hsien4,Tai Chih-Hsuan2,Chou Tzyy-Chao2,Chu Chi-Yuan2,Chen Yu-Ju3,Lo Lee-Chiang2,Lin Jing-Jer1ORCID

Affiliation:

1. Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei 100, Taiwan

2. Department of Chemistry, National Taiwan University, Taipei 106, Taiwan

3. Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan

4. Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan

Abstract

ABSTRACT Tripeptidyl peptidase II (TPPII or TPP2) degrades N-terminal tripeptides from proteins and peptides. Studies in both humans and mice have shown that TPPII deficiency is linked to cellular immune-senescence, lifespan regulation and the aging process. However, the mechanism of how TPPII participates in these processes is less clear. In this study, we established a chemical probe-based assay and found that although the mRNA and protein levels of TPPII were not altered during senescence, its enzymatic activity was reduced in senescent human fibroblasts. We also showed that elevation of the levels of the serine protease inhibitor serpinB2 reduced TPPII activity in senescent cells. Moreover, suppression of TPPII led to elevation in the amount of lysosomal contents as in well as TPPI (TPP1) and β-galactosidase activities, suggesting that lysosome biogenesis is induced to compensate for the reduction of TPPII activity in senescent cells. Together, this study discloses a critical role of the serpinB2-TPPII signaling pathway in proteostasis during senescence. Since serpinB2 levels can be increased by a variety of cellular stresses, reduction of TPPII activity through activation of serpinB2 might represent a common pathway for cells to respond to different stress conditions. This article has an associated First Person interview with the first author of the paper.

Funder

Ministry of Science and Technology

Ministry of Education

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The molecular neural mechanism underlying the acceleration of brain aging due to Dcf1 deficiency;Molecular and Cellular Neuroscience;2023-09

2. First person – Chia-Li Liao;Journal of Cell Science;2022-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3