AN ANALYSIS OF CONTROL OF THE VENTRICLE OF THE MOLLUSC MERCENARIA MERCENARIA

Author:

Devlin C. L.

Abstract

This study focuses on the ionic mechanisms involved in serotonergic control of the ventricle from the mollusc Mercenaria mercenaria. The effects of calcium (Ca2+), sodium (Na+), potassium (K+), magnesium (Mg2+) and chloride (Cl-) ions on the action of 5-hydroxytryptamine (5-HT) were tested using a sucrose-gap technique. 5-HT increased the amplitude and frequency of the cardiac action potentials (APs) and coupled systolic force in a range of concentrations from the threshold, at 10–10 mol l-1, to 10-6 mol l-1. Low, physiological doses of 5-HT increased the rate of rise and amplitude of the fast rising phase of the AP, and hastened the process of repolarization. Doses of 5-HT higher than 10-5 mol l-1 caused systolic arrest. The action of 5-HT was highly dependent on the presence of physiological levels of extracellular Ca2+. It had a maximal effect on systolic activity in a calcium chloride concentration range of 9–18 mmol l-1. The activity of 5-HT was blocked by treatment with Ca2+-free saline, with inorganic Ca2+ blockers (lanthanum or cobalt) or with an organic Ca2+ entry blocker (verapamil). The effects of 5- HT were potentiated by treatment with barium ions (Ba2+), by a dihydropyridine-sensitive Ca2+ agonist, Bay K 8644, or by a vertebrate Ca2+ entry blocker, diltiazem. Removal of extracellular Na+ or treatment with a Na+ ionophore, monensin, did not significantly affect excitation by 10-6 mol l-1 5-HT; nor did the removal of Cl- or Mg2+. Unlike Ca2+, these three ions probably did not have a critical role during the excitatory action of 5-HT. The excitatory action of 5-HT was not significantly altered by treatment with K+-free saline. When the membrane was depolarized by high-K+ salines, however, 5-HT was unable to elicit any APs or systolic contractions, suggesting that its mechanism may involve voltage-sensitive channels.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3