Affiliation:
1. Sea Mammal Research Unit, University of St Andrews, St Andrews, Fife KY16 8LB, UK
2. Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
Abstract
ABSTRACT
To maximize foraging duration at depth, diving mammals are expected to use the lowest cost optimal speed during descent and ascent transit and to minimize the cost of transport by achieving neutral buoyancy. Here, we outfitted 18 deep-diving long-finned pilot whales with multi-sensor data loggers and found indications that their diving strategy is associated with higher costs than those of other deep-diving toothed whales. Theoretical models predict that optimal speed is proportional to (basal metabolic rate/drag)1/3 and therefore to body mass0.05. The transit speed of tagged animals (2.7±0.3 m s−1) was substantially higher than the optimal speed predicted from body mass (1.4–1.7 m s−1). According to the theoretical models, this choice of high transit speed, given a similar drag coefficient (median, 0.0035) to that in other cetaceans, indicated greater basal metabolic costs during diving than for other cetaceans. This could explain the comparatively short duration (8.9±1.5 min) of their deep dives (maximum depth, 444±85 m). Hydrodynamic gliding models indicated negative buoyancy of tissue body density (1038.8±1.6 kg m–3, ±95% credible interval, CI) and similar diving gas volume (34.6±0.6 ml kg−1, ±95% CI) to those in other deep-diving toothed whales. High diving metabolic rate and costly negative buoyancy imply a ‘spend more, gain more’ strategy of long-finned pilot whales, differing from that in other deep-diving toothed whales, which limits the costs of locomotion during foraging. We also found that net buoyancy affected the optimal speed: high transit speeds gradually decreased during ascent as the whales approached neutral buoyancy owing to gas expansion.
Funder
Office of Naval Research
Strategic Environmental Research and Development Program
Bio-Logging Science of the University of Tokyo
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献