Affiliation:
1. Department of Physiology, University of Kentucky College of Medicine,Lexington, KY 40536 USA
2. Department of Biological Sciences, University of Notre Dame, Notre Dame,IN 46556 USA
3. Department of Biology, University of Victoria, British Columbia, V8W3N5 Canada
Abstract
SUMMARY
Using a behavioral assay based on visually mediated escape responses, we measured long-wavelength-sensitive red cone (LC) sensitivities in zebrafish. In a 24 h period, the zebrafish were least sensitive to red light in the early morning and most sensitive in the late afternoon. To investigate if the fluctuation of behavioral cone sensitivity correlates with opsin gene expression, we measured LC opsin mRNA expression at different times in the day and night under different lighting conditions. Under a normal light–dark cycle, the expression of LC opsin mRNA determined by real-time RT–PCR was low in the early morning and high in the late afternoon, similar to the fluctuation of behavioral cone sensitivity. This rhythm of LC opsin mRNA expression, however, dampened out gradually in constant conditions. After 24 h of constant light (LL), the expression of LC opsin mRNA dropped to levels similar to those determined in the early morning in control animals. By contrast, when the zebrafish were kept in constant dark (DD), the expression of LC opsin mRNA increased, to levels about 30-fold higher than the expression in the early morning in control animals. This day–night fluctuation in LC opsin mRNA expression was correlated to changes in opsin density in the outer segment of cone photoreceptor cells. Microspectrophotometry (MSP)measurements found significant differences in red cone outer segment optical density with a rhythm following the behavioral sensitivity. Furthermore,dopamine modulated the circadian rhythms in expression of LC opsin mRNA. Administration of dopamine increased LC opsin mRNA expression, but only in the early morning.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献