A hull reconstruction–reprojection method for pose estimation of free-flying fruit flies

Author:

Maya Roni123ORCID,Lerner Noam123ORCID,Ben-Dov Omri123ORCID,Pons Arion123ORCID,Beatus Tsevi123ORCID

Affiliation:

1. School of Computer Science and Engineering, The Hebrew University of Jerusalem 1 , Jerusalem 9190401 , Israel

2. Institute of Life Sciences, The Hebrew University of Jerusalem 2 , Jerusalem 9190401 , Israel

3. Center of Bioengineering, The Hebrew University of Jerusalem 3 , Jerusalem 9190401 , Israel

Abstract

ABSTRACT Understanding the mechanisms of insect flight requires high-quality data of free-flight kinematics, e.g. for comparative studies or genetic screens. Although recent improvements in high-speed videography allow us to acquire large amounts of free-flight data, a significant bottleneck is automatically extracting accurate body and wing kinematics. Here, we present an experimental system and a hull reconstruction–reprojection algorithm for measuring the flight kinematics of fruit flies. The experimental system can automatically record hundreds of flight events per day. Our algorithm resolves a significant portion of the occlusions in this system by a reconstruction–reprojection scheme that integrates information from all cameras. Wing and body kinematics, including wing deformation, are then extracted from the hulls of the wing boundaries and body. This model-free method is fully automatic, accurate and open source, and can be readily adjusted for different camera configurations or insect species.

Funder

Israel Science Foundation

Azrieli Foundation

Hebrew University of Jerusalem

Jerusalem Brain Community

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3