The GDP-dependent Rab27a effector coronin 3 controls endocytosis of secretory membrane in insulin-secreting cell lines

Author:

Kimura Toshihide1,Kaneko Yukiko1,Yamada Shogo1,Ishihara Hisamitsu2,Senda Takao3,Iwamatsu Akihiro4,Niki Ichiro1

Affiliation:

1. Department of Pharmacology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan

2. Division of Molecular Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan

3. Department of Anatomy I, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan

4. Protein Research Network, Inc., 1-13-5 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan

Abstract

Rab27a is involved in the control of membrane traffic, a crucial step in the regulated secretion. Typically, the guanosine triphosphate (GTP)-bound form has been considered to be active and, therefore, searching for proteins binding to the GTP-form has been attempted to look for their effectors. Here, we have identified the actin-bundling protein coronin 3 as a novel Rab27a effector that paradoxically bound guanosine diphosphate (GDP)-Rab27a in the pancreatic β-cell line MIN6. Coronin 3 directly bound GDP-Rab27a through its β-propeller structure. The most important insulin secretagogue glucose promptly shifted Rab27a from the GTP- to GDP-bound form. Knockdown of coronin 3 by RNAi resulted in the inhibition of phogrin (an insulin-granule-associated protein) internalization and the uptake of FM4-64 (a marker of endocytosis). Similar results were reproduced by disruption of the coronin-3–GDP-Rab27a interaction with the dominant-negative coronin 3, and coexpression of the GDP-Rab27a mutant rescued these changes. Taken together, our results indicate that interaction of GDP-Rab27a and coronin 3 is important in stimulus-endocytosis coupling, and that GTP- and GDP-Rab27a regulates insulin membrane recycling at the distinct stages.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3