A single gamma-tubulin gene and mRNA, but two gamma-tubulin polypeptides differing by their binding to the spindle pole organizing centres

Author:

Lajoie-Mazenc I.1,Detraves C.1,Rotaru V.1,Gares M.1,Tollon Y.1,Jean C.1,Julian M.1,Wright M.1,Raynaud-Messina B.1

Affiliation:

1. Institut de Pharmacologie et de Biologie Structurale (CNRS), Toulouse, France.

Abstract

Cells of eukaryotic organisms exhibit microtubules with various functions during the different developmental stages. The identification of multiple forms of alpha- and beta-tubulins had raised the question of their possible physiological roles. In the myxomycete Physarum polycephalum a complex polymorphism for alpha- and beta-tubulins has been correlated with a specific developmental expression pattern. Here, we have investigated the potential heterogeneity of gamma-tubulin in this organism. A single gene, with 3 introns and 4 exons, and a single mRNA coding for gamma-tubulin were detected. They coded for a polypeptide of 454 amino acids, with a predicted molecular mass of 50,674, which presented 64–76% identity with other gamma-tubulins. However, immunological studies identified two gamma-tubulin polypeptides, both present in the two developmental stages of the organism, uninucleate amoebae and multinucleate plasmodia. The two gamma-tubulins, called gamma s- and gamma f-tubulin for slow and fast electrophoretic mobility, exhibited apparent molecular masses of 52,000 and 50,000, respectively. They were recognized by two antibodies (R70 and JH46) raised against two distinct conserved sequences of gamma-tubulins. They were present both in the preparations of amoebal centrosomes possessing two centrioles and in the preparations of plasmodial nuclear metaphases devoid of structurally distinct polar structures. These two gamma-tubulins exhibited different sedimentation properties as shown by ultracentrifugation and sedimentation in sucrose gradients. Moreover, gamma s-tubulin was tightly bound to microtubule organizing centers (MTOCs) while gamma f-tubulin was loosely associated with these structures. This first demonstration of the presence of two gamma-tubulins with distinct properties in the same MTOC suggests a more complex physiological role than previously assumed.

Publisher

The Company of Biologists

Subject

Cell Biology

Reference75 articles.

1. An unusual actin-encoding gene in Physarum polycephalum.;Adam;Gene,1991

2. Microinjection of gamma-tubulin antibody into cultured neurons inhibits centrosome function and compromises axon growth.;Ahmad;Mol. Biol. Cell,1993

3. Genetic analysis of the relationships between the amoebalextranuclear spindle-organizing centre and the plasmodial intranuclear spindle-organizing centre of Physarum during conjugation.;Akhavan-Niaki;J. Cell Sci,1991

4. The ultrastructure of mitosis in myxamoebae and plasmodia of Physarum flaviconum.;Aldrich;Am. J. Bot,1969

5. Cell Biology- ABG of Microtubule Assembly.;Alfa;Nature,1991

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3