Affiliation:
1. Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.
Abstract
The endoplasmic reticulum undergoes rapid, microscopic changes in its structure, including extension and anastomosis of tubular elements. Such dynamism is expected to manifest itself also as rapid intermixing of membrane components, at least within subdomains of the endoplasmic reticulum. Here we present evidence of a similar dynamism in the sarcoplasmic reticulum of developing skeletal muscle. The sarcoplasmic reticulum is sometimes considered a specialized type of endoplasmic reticulum, but it appears to be a rather static set of membrane-bound elements, repetitively arranged to enwrap each sarcomere of each myofibril. Both endoplasmic reticulum and sarcoplasmic reticulum contain P-type Ca(2+)-ATPases that transport calcium from the cytosol into their lumen. In the experiments reported here, chicken and mouse cells were fused by polyethylene glycol, natural myogenic cell fusion, or Sendai virus. The redistribution of Ca(2+)-ATPase molecules between chick and mouse endoplasmic reticulum/sarcoplasmic reticulum was followed by immunofluorescence microscopy in which species-specific monoclonal antibodies to chick and mouse Ca(2+)-ATPases were used. Redistribution was time- and temperature-dependent but independent of protein synthesis as well as the method of cell fusion. Intermixing occurred on a time scale of tens of minutes at 37 degrees C. These results verify the dynamic nature of the sarcoplasmic reticulum and illustrate an aspect of the special relationship between endoplasmic reticulum and sarcoplasmic reticulum.
Publisher
The Company of Biologists
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献