Hydra regeneration from recombined ectodermal and endodermal tissue. I. Epibolic ectodermal spreading is driven by cell intercalation

Author:

Kishimoto Y.1,Murate M.1,Sugiyama T.1

Affiliation:

1. Department of Life Science, Graduate University for Advanced Studies, Mishima, Japan.

Abstract

Cell-cell interaction and cell rearrangement were examined in the process of epithelial sheet formation during regeneration from hydra cell aggregates. The ectodermal and endodermal epithelial cell layers of Hydra magnipapillata were separated by procaine treatment. Each of the separated layers was then dissociated into single cells and reaggregated to produce ectodermal or endodermal cell aggregates. When the two aggregate types were recombined, a firm adhesion was quickly established between them. This was followed by a vigorous spreading of the ectodermal epithelial cells as a thin layer over the endoderm in a manner similar to the ‘epiboly’ in some developing embryos. Cell movement in this spreading process was examined using fluorescent dyestaining. It revealed that cells initially located in the inside of the aggregate migrated to intercalate themselves among the cells originally present in the contact surface. This radial cell intercalation took place continuously in the contact surface of both the ectodermal and endodermal aggregates, and produced a rapid growth of the contact surface, eventually leading to complete envelopment of the entire endoderm by the ectoderm. The resulting structure was a small sphere having a two-layered epithelial organization as in normal hydra. This sphere regenerated into a complete hydra a few days later. A tryptic extract of hydra membrane fraction specifically inhibited the ectodermal spreading over the endoderm, but not the initial adhesion or the later regeneration processes. These observations suggest that radial cell intercalation at the contact surface plays a crucial role in producing ectodermal spreading and establishing epithelial sheet organization in the recombined aggregates. The intercalation is presumably activated by a signal exchange through the contact surface. The inhibitory effect of the membrane extract suggests that it contains a factor that is involved in some way in this signaling mechanism.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3