Evidence that the endogenous histone H1 phosphatase in HeLa mitotic chromosomes is protein phosphatase 1, not protein phosphatase 2A

Author:

Paulson J.R.1,Patzlaff J.S.1,Vallis A.J.1

Affiliation:

1. Department of Chemistry, University of Wisconsin-Oshkosh 54901-8645, USA. paulson@vaxa.cis.uwosh.edu

Abstract

Histone H1 is highly phosphorylated in mitotic HeLa cells, but is quickly dephosphorylated in vivo at the end of mitosis and in vitro following cell lysis. We show here that okadaic acid and microcystin-LR block the in vitro dephosphorylation of H1 and that they do so directly by inhibiting the histone H1 phosphatase rather than by some indirect mechanism. The concentrations of microcystin and okadaic acid required for inhibition strongly suggest that the histone H1 phosphatase is either PP1 or an unknown protein phosphatase with okadaic acid-sensitivity similar to PP1. The histone H1 phosphatase is predominantly located in chromosomes with at most one copy for every 86 nucleosomes. This tends to support its identification as PP1, since localization in mitotic chromosomes is a characteristic of PP1 but not of the other known okadaic acid-sensitive protein phosphatases. We also show that treatment of metaphase-arrested HeLa cells with staurosporine and olomoucine, inhibitors of p34cdc2 and other protein kinases, rapidly induces reassembly of interphase nuclei and dephosphorylation of histone H1 without chromosome segregation. This result indicates that protein kinase activity must remain elevated to maintain a mitotic block. Using this as a model system for the M- to G1-phase transition, we present evidence from inhibitor studies suggesting that the in vivo histone H1 phosphatase may be either PP1 or another phosphatase with similar okadaic acid-sensitivity, but not PP2A.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3