Function of spindle microtubules in directing cortical movement and actin filament organization in dividing cultured cells

Author:

Fishkind D.J.1,Silverman J.D.1,Wang Y.L.1

Affiliation:

1. Cell Biology Group, Worcester Foundation for Biomedical Research, Shrewsbury, MA 01545, USA.

Abstract

The mitotic spindle has long been recognized to play an essential role in determining the position of the cleavage furrow during cell division, however little is known about the mechanisms involved in this process. One attractive hypothesis is that signals from the spindle may function to induce reorganization of cortical structures and transport of actin filaments to the equator during cytokinesis. While an important idea, few experiments have directly tested this model. In the present study, we have used a variety of experimental approaches to identify microtubule-dependent effects on key cortical events during normal cell cleavage, including cortical flow, reorientation of actin filaments, and formation of the contractile apparatus. Single-particle tracking experiments showed that the microtubule disrupting drug nocodazole induces an inhibition of the movements of cell surface receptors following anaphase onset, while the microtubule stabilizing drug taxol causes profound changes in the overall pattern of receptor movements. These effects were accompanied by a related set of changes in the organization of the actin cytoskeleton. In nocodazole-treated cells, the three-dimensional organization of cortical actin filaments appeared less ordered than in controls. Measurements with fluorescence-detected linear dichroism indicated a decrease in the alignment of filaments along the spindle axis. In contrast, actin filaments in taxol-treated cells showed an increased alignment along the equator on both the ventral and dorsal cortical surfaces, mirroring the redistribution pattern of surface receptors. Together, these experiments show that spindle microtubules are involved in directing bipolar flow of surface receptors and reorganization of actin filaments during cell division, thus acting as a stimulus for positioning cortical cytoskeletal components and organizing the contractile apparatus of dividing tissue culture cells.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3