Substratum-dependent stimulation of fibroblast migration by the gelatin-binding domain of fibronectin

Author:

Schor S.L.1,Ellis I.1,Dolman C.1,Banyard J.1,Humphries M.J.1,Mosher D.F.1,Grey A.M.1,Mould A.P.1,Sottile J.1,Schor A.M.1

Affiliation:

1. Department of Dental Surgery and Periodontology, Dental School, University of Dundee, UK.

Abstract

Nanomolar concentrations of native fibronectin and its RGDS-containing cell-binding domain have previously been reported to stimulate fibroblast migration in the transmembrane (or ‘Boyden chamber’) assay; in contrast, the gelatin-binding domain (GBD) of fibronectin has consistently been reported to be devoid of migration-stimulating activity in this assay. We have examined the effects of fibronectin and several of its purified functional domains on the migration of human skin fibroblasts in what is presumably a more physiologically relevant assay involving the movement of cells into a 3-D matrix of native type I collagen fibrils. We report that: (a) femtomolar concentrations of GBD stimulate fibroblast migration into such collagen matrices; and (b) fibronectin, as well as peptides containing all other of its functional domains, do not exhibit migration-stimulating activity when tested in the femtomolar to nanomolar concentration range (i.e. 0.1 pg/ml to 1 microgram/ml). The correct assignment of migration-stimulating activity to GBD, rather than to a contaminant, was confirmed by: (a) the use of several fibronectin and GBD purification protocols; (b) the neutralization of GBD migration-stimulating activity by monoclonal antibodies directed against epitopes present in this domain; (c) the time-dependent generation of migration-stimulating activity by the proteolytic degradation of native fibronectin; and (d) obtaining an identical dose-response curve with a genetically engineered GBD peptide. The cryptic migration-stimulating activity of GBD was not affected by the presence of serum or native fibronectin, but was inhibited by TGF-beta 1. Parallel experiments using the transmembrane assay confirmed that GBD was devoid of migration-stimulating activity in this assay when membranes coated with gelatin were used, but revealed that significant stimulation of migration was achieved with membranes coated with native type I collagen. Cells preincubated with GBD for 24 hours whilst growing on plastic tissue culture dishes and then plated onto native collagen matrices in the absence of further GBD also displayed an elevated migration compared to controls. Taken together, these observations suggest that: (a) the interaction of GBD with a putative cell surface receptor (and not the collagen substratum) initiates a persistent alteration in cell phenotype which is manifest by an increase in migratory activity when these cells are cultured on a native collagen substratum; and (b) GBD may play a hitherto unrecognised role in the control of cell migration in response to the local release of proteases during pathological processes, such as tumour invasion and wound repair.

Publisher

The Company of Biologists

Subject

Cell Biology

Reference47 articles.

1. Effects of LETS glycoprotein on cell motility.;Ali;Cell,1978

2. Signal transduction for chemotaxis and haptotaxis by matrix molecules in tumour cells.;Aznavoorian;J. Cell Biol,1990

3. Role of the I-9 and III-1 modules of fibronectin in formation of an extracellular fibronectin matrix.;Chernousov;J. Biol. Chem,1991

4. Cryptic chemotactic activity of fibronectin for human monocytes resides in the 120-kDa fibroblastic cell-binding fragment.;Clark;J. Biol. Chem,1988

5. Fibronectin matrix deposition and fibronectin receptor expression in healing and normal skin.;Clark;J. Invest.Dermatol,1990

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3