Microtubule-based peroxisome movement

Author:

Rapp S.1,Saffrich R.1,Anton M.1,Jakle U.1,Ansorge W.1,Gorgas K.1,Just W.W.1

Affiliation:

1. Institut fur Biochemie I der Universitat Heidelberg, Germany.

Abstract

The association of peroxisomes with cytoskeletal structures was investigated both by electron microscopy and by kinetic analysis of peroxisome movement. The morphological studies indicated distinct interactions of peroxisomes with microtubules and frequently revealed multiple contact sites. The kinetic approach utilised microinjection and import of fluorescein-labeled luciferase in order to mark and track peroxisomes in vivo. Peroxisomal motility was analysed by time-lapse imaging and fluorescence microscopy. According to their movement peroxisomes were classified into two groups. Group 1 peroxisomes comprising the majority of organelles at 37 degrees C moved slowly with an average velocity of 0.024 +/- 0.012 micron/second whereas the movement of group 2 peroxisomes, 10–15% of the total population, was saltatory exhibiting an average velocity of 0.26 +/- 0.17 micron/second with maximal values of more than 2 microns/second. Saltations were completely abolished by the microtubule-depolymerising drug nocodazole and were slightly reduced by about 25% by cytochalasin D which disrupts the actin microfilament system. Double fluorescence labeling of both peroxisomes and microtubules revealed peroxisome saltations linked to distinct microtubule tracks. Cellular depletion of endogenous levels of NTPs as well as the use of 5′-adenylylimidodiphosphate, a nonhydrolysable ATP analog, applied to a permeabilised cell preparation both completely blocked peroxisomal movement. These data suggest an ATPase dependent, microtubule-based mechanism of peroxisome movement. Both the intact and the permeabilised cell system presented in this paper for the first time allow kinetic measurements on peroxisomal motility and thus will be extremely helpful in the biochemical characterisation of the motor proteins involved.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3