Organelle motility and metabolism in axons vs dendrites of cultured hippocampal neurons

Author:

Overly C.C.1,Rieff H.I.1,Hollenbeck P.J.1

Affiliation:

1. Department of Neurobiology, Harvard Medical School, Boston MA 02115, USA.

Abstract

Regional regulation of organelle transport seems likely to play an important role in establishing and maintaining distinct axonal and dendritic domains in neurons, and in managing differences in local metabolic demands. In addition, known differences in microtubule polarity and organization between axons and dendrites along with the directional selectivity of microtubule-based motor proteins suggest that patterns of organelle transport may differ in these two process types. To test this hypothesis, we compared the patterns of movement of different organelle classes in axons and different dendritic regions of cultured embryonic rat hippocampal neurons. We first examined the net direction of organelle transport in axons, proximal dendrites and distal dendrites by video-enhanced phase-contrast microscopy. We found significant regional variation in the net transport of large phase-dense vesicular organelles: they exhibited net retrograde transport in axons and distal dendrites, whereas they moved equally in both directions in proximal dendrites. No significant regional variation was found in the net transport of mitochondria or macropinosomes. Analysis of individual organelle motility revealed three additional differences in organelle transport between the two process types. First, in addition to the difference in net transport direction, the large phase-dense organelles exhibited more persistent changes in direction in proximal dendrites where microtubule polarity is mixed than in axons where microtubule polarity is uniform. Second, while the net direction of mitochondrial transport was similar in both processes, twice as many mitochondria were motile in axons than in dendrites. Third, the mean excursion length of moving mitochondria was significantly longer in axons than in dendrites. To determine whether there were regional differences in metabolic activity that might account for these motility differences, we labeled mitochondria with the vital dye, JC-1, which reveals differences in mitochondrial transmembrane potential. Staining of neurons with this dye revealed a greater proportion of highly charged, more metabolically active, mitochondria in dendrites than in axons. Together, our data reveal differences in organelle motility and metabolic properties in axons and dendrites of cultured hippocampal neurons.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3