Mechanical stimulation initiates cell-to-cell calcium signaling in ovine lens epithelial cells

Author:

Churchill G.C.1,Atkinson M.M.1,Louis C.F.1

Affiliation:

1. Department of Biochemistry, University of Minnesota, St Paul 55108, USA.

Abstract

Although abnormalities in calcium regulation have been implicated in the development of most forms of cataract, the mechanisms by which Ca2+ is regulated in the cells of the ocular lens remain poorly defined. Cell-to-cell Ca2+ signaling was investigated in primary cultures of ovine epithelial cells using the Ca(2+)-reporter dye fura-2 and fluorescence microscopy. Mechanical stimulation of a single cell with a micropipette initiated a propagated increase in cytosolic free Ca2+ that spread from the stimulated cell through 2–8 tiers of surrounding cells. During this intercellular Ca2+ wave, cytosolic Ca2+ increased 2- to 12-fold from resting levels of approximately 100 nM. Nanomolar extracellular Ca2+ did not affect the cell-to-cell propagation of the Ca2+ wave, but reduced the magnitude of the cytosolic Ca2+ increases, which was most evident in the mechanically-stimulated cell. Depletion of intracellular Ca2+ stores with thapsigargin eliminated the propagated intercellular Ca2+ wave, but did not prevent the cytosolic Ca2+ increase in the mechanically-stimulated cell, which required extracellular Ca2+ and was attenuated by the addition of the Ca2+ channel blockers Ni2+, Gd3+ and La3+ to the medium. These results are most easily explained by a mechanically-activated channel in the plasma membrane of the stimulated cell. The propagated increase in cytosolic Ca2+ appeared to be communicated to adjacent cells by the passage of an intracellular messenger other than Ca2+ through gap junction channels. However, if the plasma membrane of the mechanically-stimulated cell was ruptured such that there was loss of cytosolic contents, the increase in cytosolic Ca2+ in the surrounding cells was elicited by both a messenger passing through gap junction channels and by a cytosolic factor(s) diffusing through the extracellular medium. These results demonstrate the existence of intercellular Ca2+ signaling in lens cells, which may play a role in regulating cytosolic Ca2+ in the intact lens.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3