Incorporation of proteins into (Xenopus) oocytes by proteoliposome microinjection: functional characterization of a novel aquaporin

Author:

Le Caherec F.1,Bron P.1,Verbavatz J.M.1,Garret A.1,Morel G.1,Cavalier A.1,Bonnec G.1,Thomas D.1,Gouranton J.1,Hubert J.F.1

Affiliation:

1. URA CNRS 256, Universite de Rennes I, France.

Abstract

Xenopus laevis oocytes are widely used as an expression system for plasma membrane proteins, achieved by cytoplasmic microinjection of messenger RNA. In the present study, we propose an alternative system allowing functional insertion of exogenous proteins into the plasma membrane of Xenopus oocytes. We microinjected proteoliposome suspensions into the cytoplasm and then analyzed membrane protein function. The proteins used in this work were members of the MIP family: the human erythrocyte water channel aquaporin 1 (AQP1), the major intrinsic protein (MIP26) from bovine eye lens and a 25 kDa polypeptide (P25) from a water shunting complex found in the digestive tract of an homopteran sap-sucking insect (Cicadella viridis). Proteoliposomes containing either AQP1, MIP26, or P25 were injected into Xenopus oocytes. The subsequent insertion of these proteins into the plasma membrane of oocytes was demonstrated by immunocytochemistry. Oocytes microinjected with either AQP1 or P25-proteoliposomes exhibited significantly increased osmotic membrane water permeabilities (Pf = 3.16 +/- 026 and 4.03 +/- 0.26 × 10(−3) cm/second, respectively) compared to those measured for oocytes injected with liposomes alone or with MIP26-proteoliposomes (Pf = 1.39 +/- 0.07 and 1.44 +/- 0.10 × 10(−3) cm/second, respectively). These effects were inhibited by HgCl2 in a reversible manner. Arrhenius activation energies of water transfer were low when AQP1 or P25 were present in oocyte plasma membranes (Ea = 2.29 and 3.01 kcal/mol, respectively, versus Ea = 11.75 kcal/mol for liposome injected oocytes). The properties observed here for AQP1 are identical to those widely reported following AQP1 cRNA expression in oocytes. From the present study, we conclude that: (1) exogenous plasma membrane proteins incorporated into liposomes and microinjected into the cytoplasm of Xenopus oocytes are subsequently found in the plasma membrane of the oocytes in a functional state; and (2) in this system, the P25 polypeptide from the MIP family found in the digestive tract of Cicadella viridis exhibits properties similar to those described for the archetype of water channels AQP1, and thus is a new member of the aquaporin family.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3