Acclimation and thermal tolerance in Antarctic marine ectotherms

Author:

Peck Lloyd S.1,Morley Simon A.1,Richard Joëlle2,Clark Melody S.1

Affiliation:

1. British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK

2. European Institute of Marine Studies, Marine Environmental Sciences Laboratory LEMAR UMR6539, Rue Dumont D'Urville, 29280 Plouzané, France

Abstract

Antarctic marine species have evolved in one of the coldest and most temperature-stable marine environments on Earth. They have long been classified as being stenothermal, or having a poor capacity to resist warming. Here we show that their ability to acclimate their physiology to elevated temperatures is poor compared with species from temperate latitudes, and similar to those from the tropics. Those species that have been demonstrated to acclimate take a very long time to do so, with Antarctic fish requiring up to 21–36 days to acclimate, which is 2–4 times as long as temperate species, and invertebrates requiring between 2 and 5 months to complete whole-animal acclimation. Investigations of upper thermal tolerance (CTmax) in Antarctic marine species have shown that as the rate of warming is reduced in experiments, CTmax declines markedly, ranging from 8 to 17.5°C across 13 species at a rate of warming of 1°C day−1, and from 1 to 6°C at a rate of 1°C month−1. This effect of the rate of warming on CTmax also appears to be present at all latitudes. A macrophysiological analysis of long-term CTmax across latitudes for marine benthic groups showed that both Antarctic and tropical species were less resistant to elevated temperatures in experiments and thus had lower warming allowances (measured as the difference between long-term CTmax and experienced environmental temperature), or warming resistance, than temperate species. This makes them more at risk from warming than species from intermediate latitudes. This suggests that the variability of environmental temperature may be a major factor in dictating an organism's responses to environmental change.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3