Suction adhesion in the gliding joint of a cephalopod

Author:

Smith Andrew M.1,LaValva Scott M.2,Loiacono Matthew M.2,Thompson Joseph T.2ORCID

Affiliation:

1. Department of Biology, Ithaca College, 953 Danby Road, Ithaca, NY 14850, USA

2. Department of Biology, Franklin & Marshall College, P.O. Box 3003, Lancaster, PA 17604-3003, USA

Abstract

We discovered features of the nuchal joint in the squid, Dortyteuthis pealeii, that are unique compared to moveable joints in other animals. The joint's function is unclear but it allows the head to glide toward and away from the mantle. The head glides along the joint with ease yet disarticulating the joint perpendicular to the axis of movement requires considerable force. After disarticulation, the joint components can be repositioned and full function restored immediately. Thus, an unknown attachment mechanism prevents the joint from being disarticulated yet permits gliding. We showed that the joint was formed by the articulation of the nuchal cartilage and a heretofore-undescribed organ that we named the nuchal “joint pad.” The joint pad was composed predominantly of muscle, connective tissue, and cartilage organized into two distinct regions: a ventral cartilaginous layer and a dorsal muscular layer. Disarticulating the nuchal joint at a displacement rate of 5 mm s−1 required 1.5-times greater stress (i.e., force per unit area) than at 1 mm s−1. The force required to disarticulate the joint increased with nuchal cartilage area0.91 and with nuchal cartilage length1.88. The stress required to shear the nuchal joint was nearly three orders of magnitude lower than that required to disarticulate the joint. Stimulation of the joint pad dorso-ventral musculature resulted in significantly greater shear force required to move the joint (p=0.004). Perforating the nuchal cartilage decreased the stress required to disarticulate the joint to nearly zero. The results support the hypothesis that suction is the attachment mechanism.

Funder

National Science Foundation

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3