A MORN-repeat protein is a dynamic component of theToxoplasma gondiicell division apparatus

Author:

Gubbels Marc-Jan1,Vaishnava Shipra2,Boot Nico1,Dubremetz Jean-François3,Striepen Boris12

Affiliation:

1. Center for Tropical and Emerging Global Diseases, University of Georgia, Paul D. Coverdell Center, Athens, Georgia 30602, USA

2. Department of Cellular Biology, University of Georgia, Paul D. Coverdell Center, Athens, Georgia 30602, USA

3. UMR CNRS 5539, Université de Montpellier 2, Montpellier, 34095, France

Abstract

Apicomplexan parasites divide and replicate through a complex process of internal budding. Daughter cells are preformed within the mother on a cytoskeletal scaffold, endowed with a set of organelles whereby in the final stages the mother disintegrates and is recycled in the emerging daughters. How the cytoskeleton and the various endomembrane systems interact in this dynamic process remains poorly understood at the molecular level. Through a random YFP fusion screen we have identified two Toxoplasma gondii proteins carrying multiple membrane occupation and recognition nexus (MORN) motifs. MORN1 is highly conserved among apicomplexans. MORN1 specifically localizes to ring structures at the apical and posterior end of the inner membrane complex and to the centrocone, a specialized nuclear structure that organizes the mitotic spindle. Time-lapse imaging of tagged MORN1 revealed that these structures are highly dynamic and appear to play a role in nuclear division and daughter cell budding. Overexpression of MORN1 resulted in severe but specific defects in nuclear segregation and daughter cell formation. We hypothesize that MORN1 functions as a linker protein between certain membrane regions and the parasite's cytoskeleton. Our initial biochemical analysis is consistent with this model. Whereas recombinant MORN1 produced in bacteria is soluble, in the parasite MORN1 was associated with the cytoskeleton after detergent extraction.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3