Formation of cell-to-substrate contacts during fibroblast motility: an interference-reflexion study

Author:

Izzard C.S.,Lochner L.R.

Abstract

The formatin of close contacts and focal contacts (ca. 30 nm and 10–15 nm separation distance respectively) has been studied during the movement of chick heart fibroblasts on planar substrates using interference-reflexion microscopy, and evaluated in the context of spreading and net movement. During spreading the overall advance of the margin of the close contact is steady, punctuated by periods in which it remains stationary, and only 5% of the time is spent withdrawing in contrast to the extreme leading edge. The close contact advances only where a lamellipodium has first extended free of the substrate (greater than or equal to 100 nm separation distance) ahead of the existing close contact. The new close contact is formed by the lamellipodium lowering to the substrate either progressively from its base forward or distally in patches which later join with the main close contact. New focal contacts are formed successively ahead of existing ones, either by microspikes or lamellipodia contacting the substrate locally ahead of the close contact, or within the close contact usually immediately, but not more than 1–2 microns, behind its margin. Examining the cell margin alternately with interference-reflexion and differential-interference contrast showed that the formation of the focal contact was preceded in 90% of the cases by the development of a linear structure in the form of a microspike (as expected), a short projection (< 2 microns long) of the lamellipodium, or a fibre within the lamellipodium, each of which could be traced to the cytoplasmic fibre typically associated with the focal contact. Stress fibres subsequently developed centripetally from these initial fibres. The different forms of the linear structure which preceded the focal contact were interchangeable, giving rise to one another, and we have evaluated that the structure common to each is probably a short bundle of microfilaments. The following features indicate that the close contact plays a primary role in marginal spreading: it is lost when spreading ceases; it is reformed when spreading resumes but only under the newly spread area; the advance of the margin of the thicker leading lamella closely follows that of the close contact; the advance of both can occur ahead of and is thus independent of existing focal contacts and associated stress fibres. We propose that the close contact provides the adhesion required to transmit to the substrate the forces involved in the forward movements of the marginal cytoplasm. The continual formation of focal contacts and stress fibres at the margin is consistent with their role, suggested by others, in drawing the bulk of the cell forward. These evaluations are discussed in the context of the form and distribution of contractile proteins in the cell margin. A primary role of the lamellipodia and microspikes in extending the cell margin and forming new adhesions, preparatory to further cytoplasmic movement, is established by this work.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3