The 14-3-3 proteins in the teleost fish rainbow trout (Oncorhynchus mykiss)

Author:

Koskinen Heikki1,Krasnov Aleksei1,Rexroad Caird2,Gorodilov Yuri3,Afanasyev Sergey4,Mölsä Hannu1

Affiliation:

1. Institute of Applied Biotechnology, University of Kuopio, POB 1627, Kuopio 70211, Finland,

2. National Center for Cool and Cold Water Aquaculture, USDA-ARS, 11861 Leetown Road, Kearneysville, WV 25430, USA,

3. Biological Institute, University of Sanct Petersburg, Oranienbaum Chaussee 2, Stary Peterhof, Sanct Petersburg 198504, Russia

4. Sechenov Institute of Evolutionary Physiology and Biochemistry, M. Toreza av. 44, Petersburg 194223, Russia

Abstract

SUMMARY We report studies of 14-3-3 genes in rainbow trout, adding to current understanding of the molecular evolution of this multigene family and its functional importance in fish. Ten genes were identified that are apparent duplicates of five ancestors. The duplicated 14-3-3 genes diverged rapidly and their cladogram is markedly different from the phylogenetic tree. The mean rate of nonsynonymous divergence of trout 14-3-3 genes is one order of magnitude greater than that of mammalian genes. An evolutionarily recent genome duplication in salmonid fish relaxed functional constraints, and selection favored establishment of novel isoforms. Differences in tissue distribution of 14-3-3 genes were minor; however, results of 31 microarray experiments showed divergence of expression profiles, which was related to structural divergence of the duplicates. We observed remarkable coordination of expression of all isoforms in our study of stress response in the brain. Profiles of the 14-3-3 genes correlated with a large group of chaperones and genes involved in cell communication and signal transduction. We studied embryonic expression of 14-3-3 genes and found abundant transcripts in the rapidly growing and differentiating parts of embryos such as eyes, tail bud and yolk syncytium during somitogenesis and in gills and pectoral fins after completion of somitogenesis. Consistent expression was observed in the neural crest, which is known to have high morphogenetic potential.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3