Studies on the ejection properties of asters: astral microtubule turnover influences the oscillatory behavior and positioning of mono-oriented chromosomes

Author:

Ault J.G.1,DeMarco A.J.1,Salmon E.D.1,Rieder C.L.1

Affiliation:

1. Wadsworth Center for Laboratories and Research, Albany, NY 12201-0509.

Abstract

The position of a mono-oriented chromosome changes as it oscillates to and from the pole to which it is attached. Such oscillatory behavior reveals that the net force on a mono-oriented chromosome is constantly changing. Fluctuations may occur in both the polewardly directed force acting at the kinetochore and the opposing outwardly directed force associated with the aster. We have examined the ejection properties of the aster—as well as the oscillatory behavior and positioning of mono-oriented chromosomes—in relation to astral microtubule turnover. We treated cells containing monopolar spindles with drugs that affect microtubule turnover, either by promoting the depletion of dynamically unstable astral microtubules (nocodazole and colcemid) or by augmenting their numbers and stability (taxol). Both types of drugs stopped the oscillatory behavior of mono-oriented chromosomes within seconds. The final position of the chromosomes depended on how microtubule turnover was affected. In the case of nocodazole and colcemid, non-kinetochore astral microtubules were depleted first and the kinetochore-to-pole distance shortened. In these cells chromosome fragments generated by laser microsurgery were no longer expelled from the center of the aster. By contrast, with taxol the number of non-kinetochore microtubules increased and the astral ejection force became stronger as shown by the finding that the chromosomes moved away from the pole to the periphery of the monaster. Moreover, arms severed from chromosomes at the periphery of the taxol monaster failed to move further away from the aster's center. From these observations we conclude that the oscillatory movements and changing position of a mono-oriented chromosome relative to the pole are mediated by changes in the number of astral microtubules. The dynamic instability of astral microtubules that leads to a rapid turnover may contribute to the astral ejection force by allowing the continual growth of microtubules out from the aster. Growing astral microtubules may exert a pushing force that their rigidity maintains until their depolymerization.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3