Learning from a paradox: recent insights into Fanconi anaemia through studying mouse models

Author:

Bakker Sietske T.1,de Winter Johan P.2,Riele Hein te1

Affiliation:

1. Division of Biological Stress Response, Netherlands Cancer Institute, Plesmanlaan 121, NL-1066 CX Amsterdam, The Netherlands

2. Department of Clinical Genetics, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands

Abstract

Fanconi anaemia (FA) is a rare autosomal recessive or X-linked inherited disease characterised by an increased incidence of bone marrow failure (BMF), haematological malignancies and solid tumours. Cells from individuals with FA show a pronounced sensitivity to DNA interstrand crosslink (ICL)-inducing agents, which manifests as G2-M arrest, chromosomal aberrations and reduced cellular survival. To date, mutations in at least 15 different genes have been identified that cause FA; the products of all of these genes are thought to function together in the FA pathway, which is essential for ICL repair. Rapidly following the discovery of FA genes, mutant mice were generated to study the disease and the affected pathway. These mutant mice all show the characteristic cellular ICL-inducing agent sensitivity, but only partially recapitulate the developmental abnormalities, anaemia and cancer predisposition seen in individuals with FA. Therefore, the usefulness of modelling FA in mice has been questioned. In this Review, we argue that such scepticism is unjustified. We outline that haematopoietic defects and cancer predisposition are manifestations of FA gene defects in mice, albeit only in certain genetic backgrounds and under certain conditions. Most importantly, recent work has shown that developmental defects in FA mice also arise with concomitant inactivation of acetaldehyde metabolism, giving a strong clue about the nature of the endogenous lesion that must be repaired by the functional FA pathway. This body of work provides an excellent example of a paradox in FA research: that the dissimilarity, rather than the similarity, between mice and humans can provide insight into human disease. We expect that further study of mouse models of FA will help to uncover the mechanistic background of FA, ultimately leading to better treatment options for the disease.

Publisher

The Company of Biologists

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology and Microbiology (miscellaneous),Medicine (miscellaneous),Neuroscience (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3