Diffusible signal molecules controlling cell differentiation and patterning in Dictyostelium

Author:

Berks Mary1,Traynor David1,Carrin Ines1,Insall Robert H.1,Kay Robert R.1

Affiliation:

1. MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, England

Abstract

Slime moulds, such as Dictyostelium discoideum, have biochemical, physiological and probably developmental features in common with both plants and animals. During development separate Dictyostelium amoebae first aggregate into collecting centers to form small multicellular organisms which, in their slug form, can migrate over the substratum toward light. Eventually a slug culminates to form a fruiting body consisting of a cellular stalk supporting a mass of spores. Development is highly regulative, indicating that it is controlled by signalling between the cells. A number of diffusible signal molecules have been discovered, including cyclic AMP, the chemoattractant in aggregation, and DIF-1, a novel chlorinated phenyl alkanone, which acts as a specific inducer of stalk cell differentiation. The migrating slug contains three types of precursor cell: prespore, prestalk A and prestalk B cells. Differentiation of these cells from uncommitted amoebae can be brought about in cell cultures by cyclic AMP and DIF-1 acting in combination: cyclic AMP alone favours prespore, DIF-1 alone favours prestalk B, cyclic AMP and DIF-1 together favour prestalk A cell differentiation. There is evidence suggesting that these signals act in the same way in the intact aggregate. A cytoplasmic DIF-1 binding protein has been discovered, whose level increases as cells become sensitive to DIF-1 and which binds DIF-1 with an affinity and specificity suggestive of a receptor. At the same time, cells are able to inactivate DIF-1 by a metabolic pathway involving at least 12 metabolites. Metabolism may also serve to produce gradients of DIF-1 in the aggregate or other signal molecules from DIF-1. Manipulation of the DIF-1 signalling system will be an important means of further elucidating its role in development.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3