Clonal analysis of epiblast fate during germ layer formation in the mouse embryo

Author:

Lawson K.A.1,Meneses J.J.1,Pedersen R.A.1

Affiliation:

1. Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Utrecht.

Abstract

The fate of cells in the epiblast at prestreak and early primitive streak stages has been studied by injecting horseradish peroxidase (HRP) into single cells in situ of 6.7-day mouse embryos and identifying the labelled descendants at midstreak to neural plate stages after one day of culture. Ectoderm was composed of descendants of epiblast progenitors that had been located in the embryonic axis anterior to the primitive streak. Embryonic mesoderm was derived from all areas of the epiblast except the distal tip and the adjacent region anterior to it: the most anterior mesoderm cells originated posteriorly, traversing the primitive streak early; labelled cells in the posterior part of the streak at the neural plate stage were derived from extreme anterior axial and paraxial epiblast progenitors; head process cells were derived from epiblast at or near the anterior end of the primitive streak. Endoderm descendants were most frequently derived from a region that included, but extended beyond, the region producing the head process: descendants of epiblast were present in endoderm by the midstreak stage, as well as at later stages. Yolk sac and amnion mesoderm developed from posterolateral and posterior epiblast. The resulting fate map is essentially the same as those of the chick and urodele and indicates that, despite geometrical differences, topological fate relationships are conserved among these vertebrates. Clonal descendants were not necessarily confined to a single germ layer or to extraembryonic mesoderm, indicating that these lineages are not separated at the beginning of gastrulation. The embryonic axis lengthened up to the neural plate stage by (1) elongation of the primitive streak through progressive incorporation of the expanding lateral and initially more anterior regions of epiblast and, (2) expansion of the region of epiblast immediately cranial to the anterior end of the primitive streak. The population doubling time of labelled cells was 7.5 h; a calculated 43% were in, or had completed, a 4th cell cycle, and no statistically significant regional differences in the number of descendants were found. This clonal analysis also showed that (1) growth in the epiblast was noncoherent and in most regions anisotropic and directed towards the primitive streak and (2) the midline did not act as a barrier to clonal spread, either in the epiblast in the anterior half of the axis or in the primitive streak. These results taken together with the fate map indicate that, while individual cells in the epiblast sheet behave independently with respect to their neighbours, morphogenetic movement during germ layer formation is coordinated in the population as a whole.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3