Methylation levels of maternal and paternal genomes during preimplantation development

Author:

Howlett S.K.1,Reik W.1

Affiliation:

1. Institute of Animal Physiology and Genetics Research, Department of Molecular Embryology, Babraham, Cambridge, UK.

Abstract

The methylation status of three highly repeated sequences was studied in sperm, eggs and preimplantation embryos with different combinations of parental chromosomes. High levels of methylation of the IAP and MUP sequence families were found in sperm and in eggs, whereas the L1 repeat was found to be highly methylated in sperm but only about 42% methylated in eggs. To assess how the two parental genomes behaved during preimplantation development, normal, fertilised embryos were compared with parthenogenetic embryos where the chromosomes are exclusively of maternal origin. It was observed that the high levels of methylation at the IAP and MUP sequences were retained through early development, with the first signs of demethylation at the IAP sequences apparent on both parental chromosomes in the blastocyst. Methylation at the sperm-derived L1 sequences dropped to about the same level as that of the egg-derived sequences by the late 2-cell stage, both then remain at this intermediate level until around the time of cavitation when levels fell to about 10% in the blastocyst. High levels of DNA methylase were detected in germinal vesicle and metaphase II oocytes; these high levels were maintained in fertilised and parthenogenetic embryos through into the morula and then declined to be undetectable in the blastocyst. Our comparison of maternal and paternal genomes suggests that methylation levels at repeat sequences are remarkably similar at the time of fertilisation or, as in the case of the L1 sequences, they become so during the first few cell cycles. Hence, there do not appear to be global methylation differences between the genomes that are retained through preimplantation development.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3