LIF, the ES-cell inhibition factor, reversibly blocks nephrogenesis in cultured mouse kidney rudiments

Author:

Bard J.B.1,Ross A.S.1

Affiliation:

1. MRC Human Genetics Unit, Western General Hospital, Edinburgh, UK.

Abstract

Mouse kidney induction proceeds in vitro much as it does in vivo: the ureteric bud bifurcates to give collecting ducts while the mesenchyme condenses into aggregates which epithelialise and then elongate into tubules with glomerular and other nephron structures. We report here that the factor known as LIF (leukaemia inhibitory factor), which regulates the differentiation and growth of embryonic-stem (ES) and other cells in culture, has little effect in vitro on growth or on ureteric-bud morphogenesis other than to stimulate the bifurcation process. It does however exert a striking effect on the mesenchyme. At about four times the concentration required to inhibit ES-cell differentiation, LIF strongly but reversibly blocks the effects of metanephric mesenchyme induction: although mesenchyme condenses around growing duct tips, the number of mature nephrons that form over 6 days is reduced by 75% or more. The few nephrons that do develop in the presence of LIF probably come from mesenchyme already induced at the time of culture and are indistinguishable from those that form in controls as assayed by morphology, by X-gal staining of endogenous galactosidase and by antibodies to brush-border and CD15 antigens. There is a further unexpected feature of rudiments cultured in LIF which is absent in controls: they contain an unexpectedly high number of stable epithelialised aggregates that express laminin around their periphery and which do not develop further. These results argue that the process of nephrogenesis involves at least two distinct stages which can be blocked by LIF: the effect of the initial induction and the future development of epithelialised aggregates.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3